TinkerNode Gravity IO扩展板

概述

TinkerNode Gravity IO扩展板是一款为TinkerNode物联网开发板系列量身打造的IO扩展板,它扩展了丰富的接口,让你方便地连接各类符合Gravity接口标准的模块,让你摆脱面包板繁杂的连线,项目搭建更加轻松优雅。此外,为了实现物联网场景下,电池供电系统经常遇到的低功耗设计问题,扩展板提供了2路电源控制,可通过数字IO打开或关闭连接在扩展板上外设的供电,让其只在需要的时候通电工作,以最小化系统功耗。

特性

  • TinkerNode物联网开发板系列专用IO扩展
  • Gravity标准接口,繁琐连线瞬间变得轻松简单
  • 外设供电可动态控制,轻松实现系统低功耗

技术规格

  • 丰富的接口扩展
    • Gravity Analog 3P接口:2个
    • Gravity Digital 3P接口:5个
    • Gravity IIC 4P接口:3个
    • Gravity UART 4P接口:1个
    • SPI 6P接口:1个
    • 复位RST 2P接口:1个
    • 电池BAT、5V、3V3供电输出2P接口:各2个
  • 产品尺寸:31×38 mm
  • 重量:8 g

接口说明

连接指南

  • 如下图将模块左上角带有白色丝印的一角与底部的主控板对齐,插入即可。

DFR0651_connection.png

使用教程

  • SPI接口使用排母,片选信号SS可通过拨码开关连接到D0~D2中的任意一个。
  • SPI接口可直接连接microSD/TF模块,当开发板自身存储空间不足时,外接microSD/TF模块可提供海量数据的存储需要。除了将模块插入SPI接口,需要注意将拨码开关的其中一路拨到ON,以将D0~D2中任意一个IO连接到片选SS,并在代码中对管脚映射作相应修改。

DFR0651_SPI_connection.png

  • 如下图,开发板的供电被划分为两块(橘蓝两色框选的区域),并分别通过EN1和EN2进行控制。当EN1和EN2悬空时(内部上拉),GND1和GND2与开发板的系统地GND相连,正常供电。当EN1或EN2通过数字管脚(D0~D4)被拉至低电平时(需要杜邦线连接),GND1或GND2与开发板的系统地GND断开,相对应的供电被断开。通过这种方式,可以将连接到扩展板的外设供电关断,实现外设的间歇工作,以达到低功耗

应用实例

通过SPI接口读写TF卡

  • 连接:将TF卡插入microSD/TF模块microSD/TF模块如上图插入到扩展板的SPI接口,并将标有D0一路的拨码开关拨到ON位置,并将扩展板插入TinkerNode主板中。
  • 测试代码:将如下代码上传至TinkerNode主板中,进行TF卡的读写测试。

    #include "FS.h"
    #include "SD.h"
    #include "SPI.h"

    #define SS D0   // For TinkerNode Series, SS can be one of D0~D2


    void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
        Serial.printf("Listing directory: %s\n", dirname);

        File root = fs.open(dirname);
        if(!root){
            Serial.println("Failed to open directory");
            return;
        }
        if(!root.isDirectory()){
            Serial.println("Not a directory");
            return;
        }

        File file = root.openNextFile();
        while(file){
            if(file.isDirectory()){
                Serial.print("  DIR : ");
                Serial.println(file.name());
                if(levels){
                    listDir(fs, file.name(), levels -1);
                }
            } else {
                Serial.print("  FILE: ");
                Serial.print(file.name());
                Serial.print("  SIZE: ");
                Serial.println(file.size());
            }
            file = root.openNextFile();
        }
    }

    void createDir(fs::FS &fs, const char * path){
        Serial.printf("Creating Dir: %s\n", path);
        if(fs.mkdir(path)){
            Serial.println("Dir created");
        } else {
            Serial.println("mkdir failed");
        }
    }

    void removeDir(fs::FS &fs, const char * path){
        Serial.printf("Removing Dir: %s\n", path);
        if(fs.rmdir(path)){
            Serial.println("Dir removed");
        } else {
            Serial.println("rmdir failed");
        }
    }

    void readFile(fs::FS &fs, const char * path){
        Serial.printf("Reading file: %s\n", path);

        File file = fs.open(path);
        if(!file){
            Serial.println("Failed to open file for reading");
            return;
        }

        Serial.print("Read from file: ");
        while(file.available()){
            Serial.write(file.read());
        }
        file.close();
    }

    void writeFile(fs::FS &fs, const char * path, const char * message){
        Serial.printf("Writing file: %s\n", path);

        File file = fs.open(path, FILE_WRITE);
        if(!file){
            Serial.println("Failed to open file for writing");
            return;
        }
        if(file.print(message)){
            Serial.println("File written");
        } else {
            Serial.println("Write failed");
        }
        file.close();
    }

    void appendFile(fs::FS &fs, const char * path, const char * message){
        Serial.printf("Appending to file: %s\n", path);

        File file = fs.open(path, FILE_APPEND);
        if(!file){
            Serial.println("Failed to open file for appending");
            return;
        }
        if(file.print(message)){
            Serial.println("Message appended");
        } else {
            Serial.println("Append failed");
        }
        file.close();
    }

    void renameFile(fs::FS &fs, const char * path1, const char * path2){
        Serial.printf("Renaming file %s to %s\n", path1, path2);
        if (fs.rename(path1, path2)) {
            Serial.println("File renamed");
        } else {
            Serial.println("Rename failed");
        }
    }

    void deleteFile(fs::FS &fs, const char * path){
        Serial.printf("Deleting file: %s\n", path);
        if(fs.remove(path)){
            Serial.println("File deleted");
        } else {
            Serial.println("Delete failed");
        }
    }

    void testFileIO(fs::FS &fs, const char * path){
        File file = fs.open(path);
        static uint8_t buf[512];
        size_t len = 0;
        uint32_t start = millis();
        uint32_t end = start;
        if(file){
            len = file.size();
            size_t flen = len;
            start = millis();
            while(len){
                size_t toRead = len;
                if(toRead > 512){
                    toRead = 512;
                }
                file.read(buf, toRead);
                len -= toRead;
            }
            end = millis() - start;
            Serial.printf("%u bytes read for %u ms\n", flen, end);
            file.close();
        } else {
            Serial.println("Failed to open file for reading");
        }


        file = fs.open(path, FILE_WRITE);
        if(!file){
            Serial.println("Failed to open file for writing");
            return;
        }

        size_t i;
        start = millis();
        for(i=0; i<2048; i++){
            file.write(buf, 512);
        }
        end = millis() - start;
        Serial.printf("%u bytes written for %u ms\n", 2048 * 512, end);
        file.close();
    }

    void setup(){
        Serial.begin(115200);
        if(!SD.begin(SS)){
            Serial.println("Card Mount Failed");
            return;
        }
        uint8_t cardType = SD.cardType();

        if(cardType == CARD_NONE){
            Serial.println("No SD card attached");
            return;
        }

        Serial.print("SD Card Type: ");
        if(cardType == CARD_MMC){
            Serial.println("MMC");
        } else if(cardType == CARD_SD){
            Serial.println("SDSC");
        } else if(cardType == CARD_SDHC){
            Serial.println("SDHC");
        } else {
            Serial.println("UNKNOWN");
        }

        uint64_t cardSize = SD.cardSize() / (1024 * 1024);
        Serial.printf("SD Card Size: %lluMB\n", cardSize);

        listDir(SD, "/", 0);
        createDir(SD, "/mydir");
        listDir(SD, "/", 0);
        removeDir(SD, "/mydir");
        listDir(SD, "/", 2);
        writeFile(SD, "/hello.txt", "Hello ");
        appendFile(SD, "/hello.txt", "World!\n");
        readFile(SD, "/hello.txt");
        deleteFile(SD, "/foo.txt");
        renameFile(SD, "/hello.txt", "/foo.txt");
        readFile(SD, "/foo.txt");
        testFileIO(SD, "/test.txt");
        Serial.printf("Total space: %lluMB\n", SD.totalBytes() / (1024 * 1024));
        Serial.printf("Used space: %lluMB\n", SD.usedBytes() / (1024 * 1024));
    }

    void loop(){

    }
  • 结果:如读写卡测试正常,将会打印类似于如下TF卡的类型和存储空间等测试信息。

DFR0651_TF_app2.png

使用电源控制管脚实现系统的超低功耗

DFR0651_EN_App1(CH).png

  • 在使用Gravity: 模拟pH计V2作户外水质监控时,pH计实际仅在需要测量时短暂通电,然后关闭即可。假如根据水质监测的要求,需要每隔10分钟测量一次pH值,每次系统唤醒->测量->数据记录->休眠花费1s,将传感器仅在需要时通电,置于间歇的工作状态,可极大降低系统功耗。在这里pH计功耗约为20mW,通过间歇工作可将其平均功耗降到原来的1/600,即33uW,并随着测量间隔变长而进一步降低。D0可通过杜邦线连接到EN1,通过将其拉低来关断pH计的电源。

    pinMode(D0,OUTPUT); //将D0配置为输出
    digitalWrite(D0,HIGH); //将D0输出高电平,打开pH计的供电
    //读取pH计值,并将数据记录到FLASH或TF卡中
    digitalWrite(D0,LOW); //将D0输出低电平,关断pH计的供电

常见问题

'''Q1. '''为什么5V端口测出不是5V电压? |

  • '''A. '''5V端口供电由主板提供,由于主控板通常不带有升压功能,当主板由太阳能或者电池供电时,5V端口悬空,无法对外供电;只有当主板由外部6V-24V或者USB供电时,5V端口才有5V电压输出对外供电。详情参考DFR0530 TinkerNode NB-IoT 物联网开发板

更多问题及有趣的应用,可以 访问论坛 进行查阅或发帖。 |

更多

DFshopping_car1.png 商城购买链接